112 research outputs found

    A marcha humana: uma abordagem biomecânica

    Get PDF
    A análise biomecânica da marcha engloba, entre outros, dados cinemáticos, cinéticos e sinais electromiográficos, que, em conjunto, promovem a descrição do fenómeno da marcha. Neste trabalho é efectuada uma revisão dos estudos existentes que versam sobre os aspectos biomecânicos da marcha, de forma a perceber-se os componentes a ter em consideração na referida análise, bem como os modelos comuns que suportam achados experimentais. A análise efectuada permitiu verificar que a necessidade de redirecção da velocidade do centro de massa entre passos prediz um forte componente do dispêndio energético na marcha e que este, por sua vez, está associado à velocidade.The biomechanical analysis of gait involves, among others, kinematic, kinetic and electromyographic signals, which, together, allow describing the gait phenomenon. This paper reviews studies focusing on the biomechanical aspects of gait, in order to understand which components must be considered in that analysis and the models supporting experimental findings. The analysis performed showed that the need to redirect the center of mass speed between steps predicts a strong component of energy expenditure in gait and that this is associated with speed

    Reliability of two methods for identifying the postural phase of gait initiation in healthy and post-stroke subjects

    Get PDF
    This study aims to compare two methods of assessing the postural phase of gait initiation as to intrasession reliability, in healthy and post-stroke subjects. As a secondary aim, this study aims to analyse anticipatory postural adjustments during gait initiation based on the centre of pressure (CoP) displacements in post-stroke participants. The CoP signal was acquired during gait initiation in fifteen post-stroke subjects and twenty-three healthy controls. Postural phase was identified through a baseline-based method and a maximal displacement based method. In both healthy and post-stroke participants higher intra-class correlation coefficient and lower coefficient of variation values were obtained with the baseline-based method when compared to the maximal displacement based method. Post-stroke participants presented decreased CoP displacement backward and toward the first swing limb compared to controls when the baseline-based method was used. With the maximal displacement based method, there were differences between groups only regarding backward CoP displacement. Postural phase duration in medial-lateral direction was also increased in post-stroke participants when using the maximal displacement based method. The findings obtained indicate that the baseline-based method is more reliable detecting the onset of gait initiation in both groups, while the maximal displacement based method presents greater sensitivity for post-stroke participants

    Home-based rehabilitation of the shoulder using auxiliary systems and artificial intelligence: an overview

    Get PDF
    Advancements in modern medicine have bolstered the usage of home-based rehabilitation services for patients, particularly those recovering from diseases or conditions that necessitate a structured rehabilitation process. Understanding the technological factors that can influence the efficacy of home-based rehabilitation is crucial for optimizing patient outcomes. As technologies continue to evolve rapidly, it is imperative to document the current state of the art and elucidate the key features of the hardware and software employed in these rehabilitation systems. This narrative review aims to provide a summary of the modern technological trends and advancements in home-based shoulder rehabilitation scenarios. It specifically focuses on wearable devices, robots, exoskeletons, machine learning, virtual and augmented reality, and serious games. Through an in-depth analysis of existing literature and research, this review presents the state of the art in home-based rehabilitation systems, highlighting their strengths and limitations. Furthermore, this review proposes hypotheses and potential directions for future upgrades and enhancements in these technologies. By exploring the integration of these technologies into home-based rehabilitation, this review aims to shed light on the current landscape and offer insights into the future possibilities for improving patient outcomes and optimizing the effectiveness of home-based rehabilitation programs.info:eu-repo/semantics/publishedVersio

    Interlimb relation during the double support phase of gait: an electromyographic, mechanical and energy based analysis

    Get PDF
    The purpose of this study is to analyse the interlimb relation and the influence of mechanical energy on metabolic energy expenditure during gait. In total, 22 subjects were monitored as to electromyographic activity, ground reaction forces and VO2 consumption (metabolic power) during gait. The results demonstrate a moderate negative correlation between the activity of tibialis anterior, biceps femoris and vastus medialis of the trailing limb during the transition between midstance and double support and that of the leading limb during double support for the same muscles, and between these and gastrocnemius medialis and soleus of the trailing limb during double support. Trailing limb soleus during the transition between mid-stance and double support was positively correlated to leading limb tibialis anterior, vastus medialis and biceps femoris during double support. Also, the trailing limb centre of mass mechanical work was strongly influenced by the leading limbs, although only the mechanical power related to forward progression of both limbs was correlated to metabolic power. These findings demonstrate a consistent interlimb relation in terms of electromyographic activity and centre of mass mechanical work, being the relations occurred in the plane of forward progression the more important to gait energy expenditure

    Interlimb coordination during the stance phase of gait in subjects with stroke

    Get PDF
    To analyze the relation between contralesional and ipsilesional limbs in subjects with stroke during step-to-step transition of walking. Observational, transversal, analytical study with a convenience sample. Physical medicine and rehabilitation clinic. Participants: Subjects (nZ16) with poststroke hemiparesis with the ability to walk independently and healthy controls (nZ22). Interventions: Not applicable. Main Outcome Measures: Bilateral lower limbs electromyographic activity of the soleus (SOL), gastrocnemius medialis, tibialis anterior, biceps femoris, rectus femoris, and vastus medialis (VM) muscles and the ground reaction force were analyzed during double-support and terminal stance phases of gait. The propulsive impulse of the contralesional trailing limb was negatively correlated with the braking impulse of the leading limb during double support (rZ .639, PZ.01). A moderate functional relation was observed between thigh muscles (rZ .529, PZ.035), and a strong and moderate dysfunctional relation was found between the plantar flexors of the ipsilesional limb and the vastus medialis of the contralesional limb, respectively (SOL-VM, rZ .80, P<.001; gastrocnemius medialis-VM, rZ .655, PZ.002). Also, a functional moderate negative correlation was found between the SOL and rectus femoris muscles of the ipsilesional limb during terminal stance and between the SOL (rZ .506, PZ.046) and VM (rZ .518, PZ.04) muscles of the contralesional limb during loading response, respectively. The trailing limb relative impulse contribution of the contralesional limb was lower than the ipsilesional limb of subjects with stroke (PZ.02) and lower than the relative impulse contribution of the healthy limb (PZ.008) during double support. The findings obtained suggest that the lower performance of the contralesional limb in forward propulsion during gait is related not only to contralateral supraspinal damage but also to a dysfunctional influence of the ipsilesional limb

    Spatio-temporal alignment of pedobarographic image sequences

    Get PDF
    O documento em anexo encontra-se na versão post-print (versão corrigida pelo editor).This paper presents a methodology to align plantar pressure image sequences simultaneously in time and space. The spatial position and orientation of a foot in a sequence are changed to match the foot represented in a second sequence. Simultaneously with the spatial alignment, the temporal scale of the first sequence is transformed with the aim of synchronizing the two input footsteps. Consequently, the spatial correspondence of the foot regions along the sequences as well as the temporal synchronizing is automatically attained, making the study easier and more straightforward. In terms of spatial alignment, the methodology can use one of four possible geometric transformation models: rigid, similarity, affine or projective. In the temporal alignment, a polynomial transformation up to the 4th degree can be adopted in order to model linear and curved time behaviors. Suitable geometric and temporal transformations are found by minimizing the mean squared error (MSE) between the input sequences. The methodology was tested on a set of real image sequences acquired from a common pedobarographic device. When used in experimental cases generated by applying geometric and temporal control transformations, the methodology revealed high accuracy. Additionally, the intra-subject alignment tests from real plantar pressure image sequences showed that the curved temporal models produced better MSE results (p<0.001) than the linear temporal model. This paper represents an important step forward in the alignment of pedobarographic image data, since previous methods can only be applied on static images

    Towards an efficient and robust foot classification from pedobarographic images

    Get PDF
    O documento em anexo encontra-se na versão post-print (versão corrigida pelo editor).This paper presents a new computational framework for automatic foot classification from digital plantar pressure images. It classifies the foot as left or right and simultaneously calculates two well-known footprint indices: the Cavanagh's arch index and the modified arch index. The accuracy of the framework was evaluated using a set of plantar pressure images from two common pedobarographic devices. The results were outstanding, since all feet under analysis were correctly classified as left or right and no significant differences were observed between the footprint indices calculated using the computational solution and the traditional manual method. The robustness of the proposed framework to arbitrary foot orientations and to the acquisition device was also tested and confirmed

    Influence of an unstable shoe on compensatory postural adjustments: An experimental evaluation

    Get PDF
    This study attempted to evaluate the influence of using an unstable shoe in muscle recruitment strategies and center of pressure (CoP) displacement after the application of an external perturbation. Fourteen healthy female subjects participated in this study. The electromyographic activity of medial gastrocnemius, tibialis anterior, rectus femoris, biceps femoris, rectus abdominis and erector spinae muscles and the kinetic values to calculate the CoP were collected and analyzed after the application of an external perturbation with the subject in standing position, with no shoes and using unstable footwear. The results showed increased in medial gastrocnemius activity during the first compensatory postural adjustments and late compensatory postural adjustments when using an unstable shoe. There were no differences in standard deviation and maximum peak of anteroposterior displacement of CoP between measurements. From the experimental findings, one can conclude that the use of an unstable shoe leads to an increase in gastrocnemius activity with no increase in CoP displacement following an unexpected external perturbation

    Ankle antagonist coactivation in the double-support phase of walking: stroke vs. healthy subjects

    Get PDF
    Lesions at ipsilateral systems related to postural control atipsilesional side, may justify the lower performance of stroke subjects duringwalking. Purpose: To analyse bilateral ankle antagonist coactivation duringdouble-support in stroke subjects. Methods: Sixteen (8 females; 8 males)subjects with a first isquemic stroke, and twenty two controls (12 females; 10males) participated in this study. The double support phase was assessedthrough ground reaction forces and electromyography of ankle muscles wasassessed in both limbs. Results: Ipsilesional limb presented statisticalsignificant differences from control when assuming specific roles during doublesupport, being the tibialis anterior and soleus pair the one in which this atypicalbehavior was more pronounced. Conclusion: The ipsilesional limb presents adysfunctional behavior when a higher postural control activity was demanded

    Influence of dual-task on sit-to-stand-to-sit postural control in Parkinson's disease

    Get PDF
    Postural control deficits are the most disabling aspects of Parkinson's disease (PD), resulting in decreased mobility and functional independence. The aim of this study was to assess the postural control stability, revealed by variables based on the centre of pressure (CoP), in individuals with PD while performing a sit-to-stand-to-sit sequence under single- and dual-task conditions. An observational, analytical and cross-sectional study was performed. The sample consisted of 9 individuals with PD and 9 healthy controls. A force platform was used to measure the CoP displacement and velocity during the sit-to-stand-to-sit sequence. The results were statistically analysed. Individuals with PD required greater durations for the sit-to-stand-to-sit sequence than the controls (p < 0.05). The anteroposterior and mediolateral CoP displacement were higher in the individuals with PD (p < 0.05). However, only the anteroposterior CoP velocity in the stand-to-sit phase (p = 0.006) was lower in the same individuals. Comparing the single- and dual-task conditions in both groups, the duration, the anteroposterior CoP displacement and velocity were higher in the dual-task condition (p < 0.05). The individuals with PD presented reduced postural control stability during the sit-to-stand-to-sit sequence, especially when under the dual-task condition. These individuals have deficits not only in motor performance, but also in cognitive performance when performing the sit-to-stand-to-sit sequence in their daily life tasks. Moreover, both deficits tend to be intensified when two tasks are performed simultaneously
    corecore